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Abstract

This study deals with vibration-based fault detection in structures and suggests a viable methodology based on principal

component analysis (PCA) and a simple pattern recognition (PR) method. The frequency response functions (FRFs) of the

healthy and the damaged structure are used as initial data. A PR procedure based on the nearest neighbour principle is

applied to recognise between the categories of the damaged and the healthy wing data. A modified PCA method is

suggested here, which not only reduces the dimensionality of the FRFs but in addition makes the PCA transformed data

from the two categories more differentiable. It is applied to selected frequency bands of FRFs which permits the reduction

of the PCA transformed FRFs to two new variables, which are used as damage features. In this study, the methodology is

developed and demonstrated using the vibration response of a scaled aircraft wing simulated by a finite element (FE)

model. The suggested damage detection methodology is based purely on the analysis of the vibration response of the

structure. This makes it quite generic and permits its potential development and application for measured vibration data

from real aircraft wings as well as for other real and complex structures.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction and background

Vibration-based health monitoring (VHM) methods are global non-destructive testing methods, which are
based on the fact that any changes introduced in a structure (including damage) change its physical properties,
and this in turn changes the structural vibration response. For most applications VHM is applied using the
modal characteristics of the structure and especially its lower resonant frequencies, which are easy to measure
from experiment [1–4]. Unfortunately in a lot of cases as has been reported in several studies these frequencies
turn out to be insensitive to damage, and especially to lower levels of damage [1,2,5,6]. The mode shapes
present a further alternative for damage assessment, but they are difficult to measure and their estimate from
data may involve substantial inaccuracies [1,3,4,6]. Another option are the updating methods, which rely on a
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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certain model of the structure, which is in most cases linear and thus might not be accurate enough especially
for a more complicated structure and/or when nonlinear effects are present [1,4,6].

Intrinsically the problems for vibration-based damage detection, quantification and localisation are pattern
recognition problems since they suggest the discrimination between two or more signal categories, i.e. signals
coming from an intact structure and those from a damaged structure, or signals coming from a structure with
different damage levels or locations [7–9]. This perspective is used in the present study, and it presents another
possible approach for damage diagnosis, which is a rather generic one since it is based solely on the structural
vibration response and thus does not use any assumptions of model or linearity. This type of purely data-
based VHM methods are relatively new but the existing research reports promising results and demonstrates
their potential [7,8,10–13]. Such an approach will include a signal processing stage to extract damage-sensitive
features and thereby to prepare the necessary environment for the next recognition (categorisation) stage. The
feature extraction stage aims at the reduction of the originally measured data but also at forming suitable
features to be used for the recognition stage. Different feature extraction methods have been suggested for
damage detection purposes [1,7–9]. Principal component analysis is a powerful data reduction method and its
application for structural vibration and VHM is suggested in several papers [10–12]. This study suggests the
use of a modified PCA method, which does not only reduce the dimension of the measured frequency response
functions, it also makes the transformed data from different categories more recognisable. This modified PCA
approach has been suggested for categorical data and it can be proven that it reduces the inter-category
distance while in the same time increasing the between-category distance of the PCA transformed data [14,15].
It should be noted also that in this particular case PCA is applied to two frequency bands of FRFs, which
reduces the dimension of the original data and eventually allows the use of only two PCA transformed
variables. This enables the visualisation of the PCA projected data in a plane and facilitates significantly the
next recognition stage. The actual recognition stage between the data from damaged and non-damaged cases
in the suggested VHM method is performed by a simple PR method based on the nearest neighbour (NN)
principle. Several papers suggest the use of neural network-based methods for this recognition stage [12–14].
In some of these papers PCA transformed FRFs are used to train the networks [12,13]. We would like to stress
on the simplicity of the recognition method used here, which is much easier and requires much less computer
resources compared to a neural network. Thus the main objective of this paper is to present a feasible method
for structural VHM, which (1) reduces the dimension of the initial FRF data and transforms it into new
damage features and (2) employs a simple PR method for the actual damage detection (recognition) stage.

Another motivation for this paper and especially the development of the method for aircraft wings is the
potential that VHMmethods may hold for monitoring aircraft structures and elements. Aircraft accidents due
to unnoticed faults, especially when they happen in-flight, can have disastrous and fatal consequences and it is
a major concern of the aircraft companies to prevent unacceptable structural failures from accidental,
environmental and fatigue damage. VHM is not currently incorporated in schemes for monitoring aircraft
structures, although it is expected to play a significant role since such methods can bring major benefits like
increased safety, extended structural life, reduced inspections, reduced aircraft weight, decreased operating
costs, detection of cracks, corrosion and fatigue damage in areas with restricted access [5,16]. This paper is an
early stage of an investigation, based on finite element (FE)-simulated results, oriented towards the
development of a practical global monitoring method for real aircraft structures. As a next step in this
development the suggested VHM method is being currently applied to measured data from an experimental
model of a scaled aircraft wing.

2. The damage detection method

As it was mentioned above this method uses PCA in the frequency domain as a feature selection procedure.
PCA is applied when one has a number n of realisations of a multidimensional (p-dimensional) variable. In
this particular case the FRFs for p different frequencies are packed to form a vector h, h ¼ ½h1; h2; . . . ; hp�

T.
Then n realisations of the vector h can be obtained from different measurement points and/or measurements.
Accordingly we have n realisations of the p-dimensional vector variable h, which come from two different
categories corresponding to ‘no-damage’ and ‘damage’ states. The idea of PCA is to transform the original
multidimensional data to new vector variables c with a smaller dimension k, k5p. This is done using the
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autocorrelation matrix of the n realisations of the vector h. In the case of categorical data like this one it is
better to use the generalised autocorrelation matrix rather than the autocorrelation matrix [10,14,15]. It is
calculated using the following relation:

R ¼
XM
i¼1

pðoiÞEðhih
T

i Þ, (1)

where M is the number of categories (in this case M ¼ 2), p(oi) is the a priori probability for the category oi,
the superscript ‘T’ stands for transpose, E denotes the mathematical expectation and hi is a standardised
vector from the ith category. In the absence of any other information the a priori probabilities for the
categories oi are assumed equal, p(oi) ¼ 1/M. In this case the two a priori probabilities are based on the
number of realisations of the vectors h corresponding to damaged and non-damaged cases used in the training
and the testing samples and their values are given in Section 5. Then the eigenvalues of the generalised
correlation matrix R, and their corresponding eigenvectors, are found. The first k largest eigenvalues and their
associated eigenvectors Fi are taken. The vectors Fi are packed to form the transformation matrix U:

U ¼ ½F1;F2; . . . ;Fk�. (2)

A vector h is transformed into a new feature c vector via

c ¼ UTh, (3)

where UT is the transpose of U.
The primary idea of PCA is to transform the original vector h into a new vector c, which has a smaller

dimension k, k5p. The choice of the k new variables is based on the variance that they are responsible for.
When applied to categorical data the modified PCA used here, which employs the generalised autocorrelation
matrix (1), is expected to have other advantageous properties since it decreases the inter-class variance at the
same time as increasing the between-class variance. This results in ‘clustering’ the new PCA transformed
vectors or bringing together the vectors from the same category while in the same time increasing the distance
between vectors from different categories [11,15,16]. In this particular case the procedure is aimed to cluster,
or group, the vectors from the undamaged and the damaged categories and to separate the two groups. The
obtained transformed vector variables c are further used as features for recognising between the data from
damaged and undamaged cases.

One rather intuitive approach is to classify each vector c into the category to which its ‘NN’, the vector
nearest to c, belongs [10,13]. This is the so-called 1�NN classifier. In this study, a NN is found on the basis of
Euclidean distance. The Euclidean distance between two feature vectors c and ci is defined as

Di ¼ c� cik k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc� ciÞ

T
ðc� ciÞ

q
. (4)

The 1�NN classifier finds the NN of c, ci, and assigns c to the class of ci. So in order to apply this classifier one
needs a ‘training’ sample of vectors cj, among which the classifier will look for the NN. The construction of the
training sample is discussed later. In the case of a large number of training data the 1�NN rule gives a rather
low probability for error which is close to the Bayesian [13]. This study uses the 1�NN classifier to classify the
new feature vectors c as damaged or non-damaged.
3. The FE model and the representation of damage

At this stage a rather simple FE model of a scaled aircraft wing is used to predict its vibration response
(Fig. 1). The model is made of 200 aluminium alloy solid elements with three degrees of freedom. The number
of elements is established after a convergence analysis. The purpose of the model is to predict from general
principles, the modal characteristics and the vibration response of the structure. The wing model was divided
into five damage volumes, V1–V5, as presented in Fig. 1.

Two types of damage are considered—in the form of cracks and distributed damage. Cracks are introduced
by disbanding a number of elements. The crack size is changed by varying the number of disbanded elements.
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Fig. 1. Schematic of the wing model.
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These are supposed to represent very narrow, one-dimensional, cracks, for which only the length can be
varied.

It is known that most damage scenarios such as corrosion, erosion and distributed cracks in composites,
generally cause stiffness reduction. Accordingly, in this study distributed damage is introduced by reducing the
stiffness of a whole volume of the wing. The extent of the distributed damage is controlled by introducing
different stiffness reductions.

Damage was introduced in all the five damage volumes (V1–V5) consecutively. It was found that the
vibration response in the first volume V1, which is close to the root of the wing, was the one most affected by
damage (see Fig. 1). The current investigation aims to develop and validate the suggested method for FE
simulated data from an aircraft wing and at this stage only damage in V1 is considered.

4. Damage detection in the aircraft wing model

The FRFs for 50 equidistantly distributed points covering the wing surface were found for excitation
applied at the midpoint of the wing model (Fig. 1). It was observed that the values of the FRFs close to the
peaks are most affected by damage. The two frequency bands, which undergo the maximum changes are those
around the peaks of 35 and 112Hz. So only 43 frequency lines, the ones between 25 and 45Hz and the ones
between 101 and 122Hz, were used to make compressed FRF vectors. Then a number of realisations of the
FRF vectors are obtained by taking the FRFs corresponding to the 50 measurement points and by adding
Gaussian noise with rms levels between 1% and 3%. The modified PCA decomposition (Eqs. (1)–(3)) was first
applied to the whole frequency range (the vectors made of 1000 frequency lines of the FRFs) and it was
concluded that in this case the first two principal components (PCs) accounted for about 70% of the whole
variance while the first 5 PCs contained 93.20% of the whole variance. Then the PCA transform was applied
to the compressed FRF vectors made of the 43 frequency lines as explained above. In this case the first two
principal components were responsible for 92.11% of the whole variance. For this reason it was decided to use
the compressed frequency vectors h made of 43 frequency lines and retain the first two principal components
partly for visualisation purposes but also because they accounted for a considerable part of the whole variance
(92.11%). The whole damage detection procedure works according to the following algorithm:
1.
 A ‘training’ sample is generated from data obtained for both damage states. (The word ‘training’ is used
here and further in the text to indicate that FRFs with known categories, i.e. calculated for known,
damaged or non-damaged, states, are used.) To generate it n realisations of FRFs corresponding to
non-damaged state and to different damage levels are obtained as was explained above (using the FRFs
from the 50 points on the wing surface and by adding Gaussian noise with rms levels between 1% and 3%).
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Then only the 43 frequency lines considered above are used to obtain the training sample of n compressed
(43-dimensional) FRF vectors h.
2.
 The obtained training sample of n vectors h is used to calculate the autocorrelation matrix R (Eq. (1)) and
the transformation matrix U corresponding to the first two eigenvalues (Eq. (2)).
3.
 The training vectors h are then PCA transformed into new feature vectors c according to Eq. (3). The
obtained feature vectors c form two sets of vectors corresponding to the two categories of data and to the
states of damage and no-damage.
4.
 When new FRF data are presented for recognition, it is first compressed by taking only the above discussed
43 frequency lines and the obtained vector h* is PCA transformed into a feature vector c*. Then the
recognition procedure is carried out and c* is classified to the class of its NN according to the 1�NN rule.

5. Some results

Cracks are introduced as explained above. The length of the crack varies between 0.01w and 0.1w, where w

is the wing width, which is from 5mm to 50mm in the example taken here.
In a previous study [5], we investigated the sensitivity of the natural frequencies of a similar FE model of an

aircraft wing to damage, and the results for this FE model confirm that the first 10 natural frequencies show
very small changes to both types of damage considered. The changes are less than 0.3% for a 50mm crack and
they are still less than 1% for a crack of length equal to half of the wing width, which is 250mm. Our results
for stiffness reduction show that 50% stiffness reduction in V1 causes changes of up to about 1%. It can be
therefore concluded on the basis of the FE results that the first 10 natural frequencies are not good candidates
for damage features for this aircraft wing model.

At this point the method suggested in the previous section is applied following the algorithm detailed above.
A training sample of 1100 h vectors is generated according to step 1 in the above algorithm: 100 of these
vectors correspond to undamaged state and the rest—to damaged state with different crack lengths (Table 1).
The length of the cracks varies from 5 to 50mm and 100 training vectors are generated for each crack length.
The autocorrelation matrix is generated according to Eq. (4) assuming p(o1) ¼ 1/11 for the non-damaged
category and p(o2) ¼ 10/11, which is based on the number of the vectors h from the two categories. Steps 2
and 3 from the above algorithm are performed to obtain the PCA transformed feature vectors. Fig. 2 presents
the distribution of the new feature vectors from both categories. The two categories in Fig. 2 are clearly
distinguishable.

Another sample of 1100 FRF vectors is then prepared the same way as the training sample to be used for
testing purposes. The testing sample is used to test the categories/states of the FRFs in it and compare them to
their true categories. The new feature vectors are obtained and classified as damaged or undamaged according
to step 4 of the above algorithm. Table 1 shows the number of correctly recognised states for the different
crack sizes.

Distributed damage in V1 is introduced as explained above and nine levels of damage representing from
10% to 50% stiffness reduction are considered (Table 2). A training sample of 1000 h vectors is made for
distributed damage according to step 1 of the above algorithm, in a similar way to the one used for crack
detection. This comprises 100 vectors from the undamaged state and 100 from each of the nine damage levels
from 10% to 50% stiffness reduction. Fig. 3 shows the distribution of the new feature vectors from the
training sample corresponding to the damaged and the undamaged states (obtained following steps 2 and 3 of
the above algorithm). Again the clustering effect is evident.
ble 1

mber of correctly recognised cases (out of 100) for different crack sizes

Crack (mm)

0 5 10 15 20 25 30 35 40 45 50

mber correctly recognised 99 90 94 96 97 95 98 99 100 99 100



ARTICLE IN PRESS

Table 2

Number of correctly recognised cases (out of 100) for different levels of distributed damage

Stiffness reduction (%)

0 10 15 20 25 30 35 40 45 50

Number correctly recognised 99 94 98 99 98 98 100 99 99 100
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Fig. 3. Distribution of the new feature vectors for distributed damage in V1.
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Fig. 2. Distribution of the new feature vectors for undamaged and for cracked wing.
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Another 1000 realisations of the FRF vectors are created to form the testing sample for distributed damage.
It is formed in the same way as the training sample discussed above. Table 2 shows the number of correctly
recognised states (damage or undamaged) for the different damage levels (including the undamaged level).

6. Conclusions
(1)
 This paper suggests a viable method for structural damage detection based on a PR perspective, which
recognises between PCA transformed FRFs from a structure in damaged and in non-damaged state.
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It uses a modified PCA transform to obtain low-dimensional damage features which help the recognition
between the two categories.
(2)
 The suggested methodology is a generic one and permits potential development for measured FRFs as
well as for other structures.
(3)
 The use of selected frequency bands of FRFs makes the methodology structure-dependent and requires its
development for each structure, which will depend on and include the selection of damage sensitive FRF
frequency bands.
(4)
 In the present study the methodology is developed for a scaled model of an aircraft wing. The results are
based on a FE simulation of the FRFs of the model. Its further development as a practical monitoring
method requires testing and validation for measured FRF data.
(5)
 The results indicate that the combination of the modified PCA transform and the PR procedure suggested
provide a suitable methodology for structural damage detection.
(6)
 From the provided numerical experiments it can be concluded that the approach suggested here worked
quite well for the used FE model of an aircraft wing. It proved capable of detecting both types of damage
in the wing model at quite a low level. It is obvious that the method can be applied with a very high
success rate to simulated FE analysis results, to which noise of between 1% and 3% has been added.
These results should be confirmed from experimental measurements as well, before the method can be
deemed suitable for practical applications.
Acknowledgement

The authors of this work would like to gratefully acknowledge the financial support of NATO Grant
CBP.EAP.CLG.981517.
References

[1] S.W. Doebling, C.R. Farrar, M.B. Prime, A summary review of vibration-based damage identification methods, The Shock and

Vibration Digest 30 (2) (1998) 91–105.

[2] B. Lazarov, I. Trendafilova, An investigation on vibration-based damage diagnosis in thin plates, Structural Health Monitoring 2004,

Proceedings of the II European Workshop, Munich, July 2004, pp. 76–82.

[3] P. Verboven, E. Parloo, P. Guillaume, M. Van Overmeire, Autonomous structural health monitoring—part I: modal parameter

estimation and tracking, Mechanical Systems and Signal Processing 16 (4) (2002) 637–657.

[4] N. Hu, X. Wang, H. Fukunaga, Z.H. Yao, H.X. Zhang, Z.S. Wu, Damage assessment of structures using modal test data,

International Journal of Solids and Structures 38/18 (2001) 3111–3126.

[5] I. Trendafilova, A study on vibration-based damage detection and location in an aircraft wing scaled model, Applied Mechanics and

Materials 3–4 (2005) 309–314.

[6] M.J. Sundaresan, A. Ghoshal, J. Li, M.J. Schulz, P.F. Pai, J.H. Chung, Experimental damage detection on a wing panel using

vibration deflection shapes, Structural Health Monitoring 2 (3) (2003) 243–256.

[7] H. Sohn, C.R. Farrar, N.F. Hunter, K. Worden, Structural health monitoring using statistical pattern recognition techniques, ASME

Journal of Dynamic Systems, Measurement and Control: Special Issue on Identification of Mechanical Systems 123 (4) (2001) 706–712.

[8] G. Manson, K. Worden, D. Allman, Experimental validation of a structural health monitoring methodology: part II. Novelty

detection on a gnat aircraft, Journal of Sound and Vibration 259 (2) (2003) 345–363.

[9] I. Trendafilova, W. Heylen, Categorization and pattern recognition methods for damage localization from vibration measurements,

Mechanical Systems and Signal Processing 17 (4) (2003) 825–836.

[10] I. Trendafilova, M. Imbabi, Novel health monitoring procedure for reinforced concrete slabs, AMM—Applied Mechanics and

Materials 1 (2004) 65–71.

[11] Y.Q. Ni, X.T. Zhou, J.M. Ko, Experimental investigation of seismic damage identification using PCA-compressed frequency

response functions and neural networks, Journal of Sound and Vibration 290 (2006) 242–263.

[12] C. Zang, M. Imregun, Structural damage detection using artificial neural networks and measured FRF data reduced via principal

component projection, Journal of Sound and Vibration 242 (5) (2001) 813–827.

[13] T. Marwala, H.E.M. Hunt, Fault identification using finite element models and neural networks, Mechanical Systems and Signal

Processing 13 (1999) 475–490.

[14] I.T. Jolliffe, Principal Component Analysis, Springer, New York, 2002.

[15] J.T. Tou, R.C. Gonzales, Pattern Recognition Principles, Addison-Wesley Publishing Company, Reading, MA, 1974.

[16] H.-J. Schmidt, J. Telgkamp, B. Schmidt-Brandecker, Application of structural health monitoring to improve efficiency of aircraft

structure, Structural Health Monitoring 2004, Proceedings of the II European Workshop, Munich, July 2004, p. 11.


	Vibration-based damage detection in an aircraft wing �scaled model using principal component analysis �and pattern recognition
	Introduction and background
	The damage detection method
	The FE model and the representation of damage
	Damage detection in the aircraft wing model
	Some results
	Conclusions
	Acknowledgement
	References


